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Abstract

A new two-component competitive adsorption model was derived to account for the competitive adsorption data of mixtures of ethylbenzoate
and 4-tert-butylphenol, on a C18-Kromasil column under RPLC conditions (mobile phase, methanol/water, 62/38, v/v). The derivation is based
on kinetic arguments and is an extension to multicomponent systems of the single-component BET isotherm. The model assumes that the
molecules of the first compound (A) can adsorb on layers made of molecules of either A or B, while molecules of B can only adsorb on
layers made of molecules of A. This makes the competitive isotherm consistent with the single-component isotherms of ethylbenzoate and
4-tert-butylphenol, the multilayer BET and the monolayer Langmuir isotherm models, respectively. The competitive adsorption data were
acquired by frontal analysis (FA) with equimolar mixtures of eight different concentrations. For the seven lowest concentrations, these data
were derived from the retention times of the shocks of the two compounds and the concentration of the intermediate plateau of the less
retained compound. At the highest concentration (25 g/l), the individual band profiles were measured by collecting and analyzing twenty
fractions. The low concentration data (C ≤ 10 g/l) are well accounted for by the two competitive isotherm models derived previously but these
models fail to describe the experimental data of 4-tert-butylphenol at high concentrations. By contrast, the new model predicts very well the
experimental adsorption data for mixtures of ethylbenzoate and 4-tert-butylphenol in the whole range of concentration studied. Our results
suggest that the adsorption constant of 4-tert-butylphenol onto layers made of ethylbenzoate (bB,A = 0.0120 l/g) is intermediate between
those of ethylbenzoate on layers made of 4-tert-butylphenol (bA,B = 0.0105 l/g) and of ethylbenzoate on itself (bA,A = 0.0145 l/g). This new
model should give an improved description of the band splitting observed for 4-tert-butylphenol in the presence of ethylbenzoate.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Elution band profiles at high concentrations are essentially
controlled by the thermodynamics of the phase equilibrium
involved, unless the mass transfer kinetics is slow[1–3]. Ac-
cordingly, the recovery yield and the production rate that can
be achieved for a given industrial separation depend largely
on this thermodynamics, i.e., on the competitive equilibrium
isotherms of the feed components. For obvious economic
reasons, preparative chromatography must be carried out at
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high concentrations. Under such conditions, the equilibrium
isotherms of the feed components between the two phases of
the chromatographic system are rarely linear. The stronger
the non-linear behavior of the isotherm at the maximum
concentration of the band, the more skewed the band profile
and the lower the resolution of the band from its neighbors,
hence the lower the recovery yield and/or the production rate
for a given purity[1]. This non-linear behavior affects the
resolution between bands at all column efficiencies, partic-
ularly because it causes intense competition for adsorption
between the components that are not or are poorly resolved
[1]. To a lesser degree, the mass transfer kinetics affects the
precise shape of the elution bands, adding to the profiles pre-
dicted by thermodynamics alone a certain amount of axial
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dispersion and smoothing their edges. For these reasons, the
use of computer-assisted optimization in the development of
new applications of preparative liquid chromatography re-
quires the prior determination of accurate thermodynamic
and kinetic data and the proper modeling of these data, i.e.,
the derivation of the competitive isotherms of the feed com-
ponents and of the rate coefficients of the various steps in-
volved in the mass transfer kinetics across the column[1–4].

Numerous methods are available for the acquisition
of equilibrium isotherm data and for the derivation of
single-component isotherms[1,5]. Frontal analysis (FA)
[1,5–7], elution by characteristic point (ECP)[1,8,9], and the
pulse method[1,10]are the most accurate, the fastest, and the
most convenient, respectively. These methods have other ad-
vantages and drawbacks which must be taken into account in
any specific case, in order to minimize the errors of measure-
ment and their costs[1]. By contrast, investigations of binary
or competitive equilibria remain far more difficult[11–17].
The acquisition of competitive isotherm data by FA or by the
pulse method is a far more ambitious project than that of the
measurement of single-component isotherms. So, the pre-
ferred method of derivation of competitive isotherms con-
sists in deriving them from the single-component isotherms
of the components of the mixture involved[1,5,11,14,17].
For this purpose, assumptions must be made as to
whether the adsorbed and the bulk liquid phases are ideal
or not.

In the specific case of ethylbenzoate and 4-tert-butylphenol,
we previously derived a new competitive adsorption
isotherm on the basis of kinetic arguments[18], assuming
that molecules of one of two components may adsorb on
those of the second one already adsorbed but that the con-
verse was forbidden. The corresponding single-component
isotherms, i.e., the isotherms obtained for one component
when the concentration of the other one is zero were the ex-
tended liquid–solid BET and the Langmuir isotherms. Con-
versely, using these two single-component isotherms, we
could derive, using the IAS theory, a thermodynamically-
consistent competitive binary isotherm model correspond-
ing to these two single-component isotherms[18]. These
two sets of competitive isotherm models were compared
with respect to the accuracy of their predictions of the
experimental band profiles of large samples of binary mix-
tures of ethylbenzoate and 4-tert-butylphenol (40 g/l each),
using a packed Kromasil-C18 column and a mixture of
methanol and water (62/38, v/v) as the stationary and mo-
bile phase, respectively[18,19]. Unexpected splitting of the
band profile of 4-tert-butylphenol was observed under these
experimental conditions. Both sets of competitive isotherms
predicted the peak splitting of 4-tert-butylphenol but did not
account quantitatively for the phenomenon. Calculations of
the band profiles using the equilibrium-dispersive model of
chromatography predicted that the second band of 4-tert-
butylphenol accounted for only less than 0.2% of the total
amount injected, instead of 5% measured. The hypothesis
of an ideal mixture in the adsorbed phase was certainly er-

roneous. Also, the fact that 4-tert-butylphenol could not be
covered by any higher layer of molecules of ethylbenzoate
might be too strong a constraint in the model and should
be released. As suggested by one reviewer of our previous
work, some competitive adsorption data should be acquired
to test these competitive adsorption models.

In this work, we acquired the adsorption data of equimo-
lar mixtures of ethylbenzoate and 4-tert-butylphenol at eight
concentrations, on the same C18-Kromasil column and with
the same methanol/water (62/38, v/v) mobile phase as in
the previous work, using frontal analysis extended to binary
mixtures. The competitive binary isotherm models derived
earlier did not account well for these experimental data.
So, we extended these models by releasing the main con-
straint and allowing the adsorption of molecules of ethyl-
benzoate on layers made of molecules of 4-tert-butylphenol
molecules. Assumptions regarding the equilibrium between
neighboring layers and layers that are not directly in con-
tact with the mobile phase are necessary to derive the com-
position of the adsorbed phase. This severely complicates
the calculations of the multicomponent adsorption isotherms
and leads to an isotherm that can be determined only numer-
ically. The experimental adsorption data and the prediction
of the new model are compared.

2. Theory

2.1. Determination of two-component isotherms by
competitive frontal analysis

Among the various chromatographic methods available
to determine the competitive isotherms of two components,
frontal analysis (FA) is the most accurate[1,20]. When the
two compounds, 1 and 2, exhibit two front shocks and when
the front shock of compound 1 appears first, a simple integral
mass balance of the binary mixture gives:

q∗
1 = (V1 − V0)C

∗
1 − (V2 − V1)(C

i
1 − C∗

1)

Vads
(1)

q∗
2 = (V2 − V0)C

∗
2

Vads
(2)

whereq∗
1 andq∗

2 are the equilibrium concentrations of the
two components in the adsorbed phase;V0, V1, V2 andVads
are the column dead volume, the elution volumes of the two
breakthrough fronts, and the volume of adsorbent in the col-
umn, respectively;C∗

1, C∗
2 andCi

1 are the feed concentrations
of components 1 and 2 and the concentration of component
1 in the intermediate plateau, respectively. Accordingly, the
single-component calibration curve of component 1 is nec-
essary to measureCi

1 at the column outlet.
Compared to the use of FA for the determination of

single-component isotherms, the determination of the cali-
bration curve of the detector is the only additional difficulty
encountered in the use of FA for the determination of
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binary isotherms. It must be emphasized, however, that the
method is accurate only insofar as there is an intermediate
plateau of component 1, i.e., that the breakthrough front of
the binary mixture has an horizontal inflection tangent that
separate two steep shock layers.

2.2. Models of single-component isotherm

The problem consists in finding a suitable isotherm model
to account for the competitive adsorption behavior of two
compounds, ethylbenzoate and 4-tert-butylphenol, knowing
their single-component isotherms. The problem is complex
because these two isotherms are quite different and the elu-
tion profiles of binary mixtures are unusual, exhibiting the
consequences of a reversal of the elution order at high con-
centrations.

2.2.1. The Langmuir isotherm
This model, which is the most frequently used in studies

of liquid–solid chromatographic equilibria, describes well
the adsorption behavior of pure 4-tert-butylphenol on the
C18-Kromasil column used in this work[18]. It is written:

q∗ = qsbC

1 + bC
(3)

In this model,qs is the monolayer saturation capacity of the
adsorbent andb is the equilibrium constant of adsorption.
This model assumes that the surface of the adsorbent is
homogeneous, that the adsorption is localized, and that there
are no adsorbate–adsorbate interactions.

2.2.2. The extended liquid–solid multilayer BET model
The adsorption behavior of ethylbenzoate on the C18-

Kromasil column used here is well accounted for by an
extension of the BET model initially derived by Brunauer,
Emmett, and Teller[18]. It is the most widely applied
isotherm model in studies of gas-solid equilibria. This model
assumes multilayer adsorption and was developed to de-
scribe adsorption phenomena in which successive molecular
layers of adsorbate form at pressures well below the pres-
sure required for the completion of the monolayer[5]. The
formulation of the extension of this model to liquid–solid
chromatography was derived and detailed earlier[21]. Its
final equation is:

q∗ = qs
bSC

(1 − bLC)(1 − bLC + bSC)
(4)

whereqs is the monolayer saturation capacity of the adsor-
bent,bS is the equilibrium constant for surface adsorption–
desorption over the free surface of the adsorbent andbL is
the equilibrium constant for surface adsorption–desorption
over a layer of adsorbate molecules. This model accounts
for local adsorption.

A variant of this isotherm model, which is more realistic
in liquid–solid adsorption, assumes that only a finite number,

N, of adsorbate layers is formed. The equation of this new
model is[22]:

q∗ = qs
1 − (N + 1)(bLC)N + N(bLC)N+1

(1 − bLC)2(1/bSC+(1−(bLC)N/1−bLC))
(5)

This last model will be the single-component isotherm con-
sistent with the competitive model that is derived in a later
section.

2.3. Models of binary competitive adsorption isotherm

In a precedent paper[18], we derived two models of com-
petitive adsorption isotherms in an attempt to describe the
individual elution band profiles of the two compounds in
mixtures of 4-tert-butylphenol and ethylbenzoate. We sum-
marize their equations.

2.3.1. Binary Langmuir–BET competitive isotherm derived
from the IAS theory

Using the framework of the IAS theory extended to
liquid–solid equilibria [23,24], the following competitive
isotherm equations were derived[18]:

qA

qS
= [bA,S + bA,AbB,SCB]CA

(1 − bA,ACA)(1 − bA,ACA + bA,SCA + bB,SCB)

qB

qS
= [bB,S − bA,AbB,SCA]CB

(1 − bA,ACA)(1 − bA,ACA + bA,SCA + bB,SCB)

(6)

where A and B stand for the single components whose ad-
sorption isotherms are described by the BET and the Lang-
muir isotherm models, respectively.bA,S and bB,S are the
adsorption constants of the molecules of A and B on the ad-
sorbent surface, respectively.bA,A is the adsorption constant
of molecules of A on a layer made of molecules of A. The
model assumes an ideal behavior for the mixture of ethyl-
benzoate and 4-tert-butylphenol in the adsorbed phase and
that the saturation capacityqS is the same for the two com-
pounds. Using the framework of the IAS theory, no inter-
action parameter is introduced between the two compounds
and all the parameters of the binary competitive isotherm
are those of the two single-component isotherms.

2.3.2. Binary Langmuir–BET competitive isotherm derived
from kinetic arguments

The following five assumptions are made regarding the
adsorption behavior of the two compounds A and B:

(I) The adsorption and desorption of A and B follow a
first order kinetics.

(II) Molecules of both A and B may adsorb on either the
solid surface or on adsorbed molecules of A.

(III) Molecules of neither A nor B may adsorb on adsorbed
molecules of B.

(IV) The adsorbed phase is composed of a finite numberN

of layers.



124 F. Gritti, G. Guiochon / J. Chromatogr. A 1028 (2004) 121–137

(V) The total monolayer capacity for A and B are not the
same (qs,A �= qs,B). Both are independent of the num-
ber of the layers in the multilayer system.

These assumptions result in the following binary compet-
itive adsorption model whenN tends towards infinite[18]:

qA

qs,A
= bA,SCA + bA,SbB,ACACB

(1 − bA,ACA)[1 − bA,ACA + bA,SCA
+ bB,SCB+(bA,SbB,A−bB,SbA,A)CACB]

(7)

qB

qs,B
= bB,SCB + (bA,SbB,A − bB,SbA,A)CACB

1 − bA,ACA + bA,SCA + bB,SCB
+ (bA,SbB,A − bB,SbA,A)CACB

(8)

wherebB,A is the adsorption constant of the B molecules
on layers made of A molecules. This is a new, indepen-
dent parameter that is introduced in the kinetic competitive
model, in addition to the parameters of the single-component
isotherms. It accounts for the interactions between molecules
of B and the molecules of A on which they are adsorbed. It
does not exist in the IAS model derived above.

2.4. Extension of the kinetic binary competitive
adsorption isotherm

The precedent kinetic model was extended by allowing
the adsorption of molecules of A on molecules of B. This
introduces another intermolecular interaction parameter.

2.4.1. Assumptions of the second kinetic model

I The adsorption and desorption of A and B follow a
first order kinetics.

II Molecules of both A and B may adsorb on either the
solid surface or on adsorbed molecules of A.

III Molecules of A may adsorb on adsorbed molecules of
B. Molecules of B cannot adsorb on other molecules
of B already adsorbed. This is the implementation to
the precedent model.

IV The adsorbed phase is composed of a finite number,
N, of layers, as shown inFig. 1.

V The total monolayer capacity for A and B are not nec-
essarily the same (qs,A �= qs,B). Both are independent
of the number of the layer in the multilayer system.

Assumption III is the new one. It would be inconsistent to
assume that B molecules can adsorb on other B molecules
because the single-component isotherm of B is accounted
for by the Langmuir model which excludes any interactions
between adsorbate molecules.

2.4.2. Definitions
The following parameters are used in the derivation of the

adsorption isotherm model. Their definitions are illustrated
in Fig. 1 and formulated below.

• qs,A andqs,B are the monolayer capacities of components
A and B, respectively.

Fig. 1. Scheme of the two-component adsorption model. Note the structure
of the adsorbed system due to the non-adsorption of compound B on
itself.

• θ0 is the fractional surface coverage of the adsorbent that
is free from adsorbate (but for solvent molecules).

• θA,A,i is the fractional surface coverage of layeri that is
occupied by molecules of A, is not covered by any higher
layer of adsorbate molecules, and covers molecules of A
in the layer i − 1 (with 2 ≤ i ≤ N). For i = 1, the
fractional surface coverage of layer 1 that is occupied by
A molecules on the adsorbent and not covered by any
layer of adsorbate molecules isθA,1.

• θA,B,i is the fractional surface coverage of layeri that is
occupied by molecules of A, is not covered by any higher
layer of adsorbate molecules, and covers molecules of B
in the layeri − 1 (with 2 ≤ i ≤ N).

• θA,i = (θA,A,i + θA,B,i) (with 2 ≤ i ≤ N).
• αi = θA,A,i/θA,i. This parameter represents the fraction

of the molecules of A that are present in the upper layeri

adsorbed on molecules of A. Hence, 1− αi = θA,B,i/θA,i

represents the fraction of the molecules of A that are in
the upper layeri adsorbed on molecules of B.

• θB,i is the fractional surface coverage of layeri that is oc-
cupied by B molecules and, according to the assumptions
of the model, covers the layeri−1 of adsorbate molecule
A (with 2 ≤ i ≤ N). θB,1 is the fractional surface cover-
age of the adsorbent surface by B molecules.

• ϕA,A,k,i is the fraction of the surface area of layerk that
is occupied by molecules of A that covers molecules of
A trapped below the upper layeri (2 ≤ i ≤ N) that is not
covered by any higher layer of adsorbate (with 1≤ k ≤
i − 1).

• ϕA,B,k,i is the fraction of the surface area of layerk that
is occupied by molecules of A that covers B molecules
trapped below the upper layeri (2 ≤ i ≤ N) that is not
covered by any higher layer of adsorbate (with 1≤ k ≤
i − 1).

• ϕB,k,i is the fraction of the surface area of layerk that
is occupied by molecules of B, and, according to the as-
sumptions of the model, covers the sublayerk − 1 of ad-
sorbate molecules of A trapped below the upper layeri
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(2 ≤ i ≤ N) that is not covered by any higher layer of
adsorbate (with 1≤ k ≤ i − 1).

• CA andCB are the concentrations of compounds A and
B in the mobile phase, respectively.

• qA andqB are the total concentrations of compounds A
and B in the adsorbed phase, respectively.

• ka
A,S andkd

A,S are the rate constants of adsorption and des-
orption of compound A on the solid surface, respectively.

• ka
B,S andkd

B,S are the rate constants of adsorption and des-
orption of compound B on the solid surface, respectively.

• ka
A,A and kd

A,A are the rate constants of adsorption and
desorption of compound A on any intermediate local layer
of compound A made on the solid surface, respectively.

• ka
B,A and kd

B,A are the rate constants of adsorption and
desorption of compound B on any intermediate local layer
of compound A made on the solid surface, respectively.

• ka
A,B andkd

A,B are the rate constants of adsorption and des-
orption of compound A on any intermediate local layer
of compound B made on the solid surface, respectively.
These parameters are the only two additional rate con-
stants introduced in the new kinetic model.

2.4.3. Combinations of parameters

• The ratiosbA,S = ka
A,S/kd

A,S and bA,A = ka
A,A/kd

A,A
are the equilibrium constants of adsorption of compound
A onto the free solid surface and onto a layer made of
molecules of A, respectively.

• The ratiosbB,S = ka
B,S/kd

B,S andbB,A = ka
B,A/kd

B,A are
the equilibrium constants of adsorption of compound B
onto the free solid surface and onto a layer made of
molecules of A, respectively.

• The ratiobA,B = ka
A,B/kd

A,B is the equilibrium constant of
adsorption of compound A onto a layer made of molecules
of B.

• rX,Y = kd
X,Y/kd

Y,S, with {X, Y}={A, A}, {A, B} or
{B, A}.

• tX,Y = kd
X,Y/kd

A,A, with {X, Y}={A, B} or {B, A}.
• K1 = 1 + bA,BrA,BCA.
• K2 = 1 + bA,BtA,BCA/tB,A.
• KL = bA,B/bA,A.
• KS = bB,SbA,A/bB,AbA,S.
• α = 1/(1 + bA,BbB,ACB/bA,A).

2.4.4. Strategy followed to derive the competitive isotherm
We will first write the 2N + 1 surface fractions of the

adsorbent surface that are occupied by the free adsorbent
surface and by either component A or B adsorbed on the top
of each of the 1≤ i ≤ N layers of the adsorbed phase in
contact with the liquid mobile phase. Then, we write phase
equilibrium as:

∂θA,i

∂t
= 0 (9-iA)

∂θB,i

∂t
= 0, with 1 ≤ i ≤ N (9-iB)

Since there areN layers, this gives 2N equations. The nor-
malization condition of the surface fractions gives the last
equation:

θ0 +
i=N∑
i=1

[θA,i + θB,i]

= θ0 +
i=N∑
i=1

[θA,A,i + θA,B,i + θB,i] = 1 (10)

The difficulty in solving this system of equations re-
sides in the fact that the proportionαi of molecules of
A adsorbed on molecules of A in theith upper layer is,
a priori, unknown (2≤ i ≤ N), which makes 3N un-
known for only 2N + 1 equations. A first guess will have
to be done if one wants to solve the system of 2N + 1
equations. The guess assumes that theαi values are all
equal to theα value that will be assessed in the next sec-
tion. Then the number of unknowns drops from 3N to
2N + 1, the exact number of equations provided by the
kinetic equations and the surface fraction normalization
equation.

Second, once theθA, A, i, θA,B,i and θB,i are known,
the suface fractionsϕ of the molecules of A and B that
are trapped below the upper layersi have to be derived
in order to calculate the total amounts adsorbed. For
any layer i that is not covered, there are 3(i − 1) − 1
unknown ϕ variables. In order to derive them, we will
write the equation stating kinetic “equilibrium” between
two successive internal layers (i.e., between layersk

and k + 1 with 1 ≤ k ≤ i − 1). These equilibria de-
scribe the exchanges between a B molecule and an A
molecule belonging to two neighboring layers. This ex-
change may lead to a local change of the interaction
configuration in the adsorbed phase so that the equilib-
rium constant is not necessarily unity (seeFig. 2a–d). If
the exchange occurs between the layerk and the layer
k + 1, the layerk + 2 should also be considered in the
calculation of the equilibrium constant. From the adsor-
bent surface (k = 1) up to the highest layer involved
(k = i − 1), there arei − 1 equilibrium relationships of
this kind. The activity coefficients of the solutes were as-
sumed to be equal to their respective fractional surface
coverage:

K(SABA ↔ SBAA) = Ki
1↔2 = KS = ϕA,A,3,iϕ

2
A,B,2,i

ϕA,1,iϕ
2
A,B,3,i

(11-1)

K(AABA ↔ ABAA ) = Ki
2↔3 = 1 = ϕA,A,4,iϕ

2
A,B,3,i

ϕA,A,2,iϕ
2
A,B,4,i

(11-2)

· · ·
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Fig. 2. (a) Determination of the equilibrium constantKS, associated to
the exchange of a molecule of A and B between the first (k = 1) and
the second (k = 2) layers. (b) Determination of the equilibrium constant
K associated to the exchange of a molecule of A and B between two
neighboring layers (k ↔ k + 1) in the adsorbed phase. (c) Determination
of the equilibrium constant associated to the exchange of a molecule of
A and a molecule of B between the last but one (k = i − 1) and the last
(k = i) layers. (d) Same as c) fori = 2.

K(AABA ↔ ABAA )

= Ki
k↔k+1 = 1 = ϕA,A,k+2,iϕ

2
A,B,k+1,i

ϕA,A,k,iϕ
2
A,B,k+2,i

(11-k)

· · ·

K(AABA ↔ ABAA ) = Ki
i−2↔i−1 = 1 = θA,A,iϕ

2
A,B,i−1,i

ϕA,A,i−2,iθ
2
A,B,i

(11-(i-2))

K(AABL ↔ ABAL ) = Ki
i−1↔i = KL = (1 − αi)

2θ2
A,i

ϕA,A,i−1,iθB,i

(11-(i-1))

where S represents the adsorbent surface area andL the
liquid phase in contact with the adsorbed phase.

In addition to these equations, there arei − 1 equations
coming from the normalization of all of the sublayers’ frac-
tions of surface area of the upper layeri:

ϕA,A,k,i + ϕA,B,k,i + ϕB,k,i = θA,i + θB,i (12-{k,i})

and finally there arei − 1 other equations arising from the
assumption made in the model (i.e., that the B molecules
can not adsorb on themselves but only on molecules of A):

ϕB,k,i = ϕA,B,k+1,i (13-{k,i})

This makes a total of 3(i−1) equations for only 3(i−1)−1
ϕ unknowns. TheEq. (11-(i-2))will be omitted at this stage
because they involveαi, which was already fixed by the
initial guess.

Accordingly, this last equation provides a useful check of
the validity of the initial guessα for the coefficientsαi. If the
difference betweenα andαi is large, the whole process will
be repeated (resolution of the system of the 2N +1 Eqs. (9)
and (10)) from a new valuesαi given byEq. (11-(i-2))until
convergence is reached.

Finally, the total amounts of compounds A and B that
are adsorbed at equilibrium can be calculated by the double
sum (first the sum on the leveli of the top layer and second
the sum on the levelk of the sublayers) of all the fractions
of surface area and by multiplying them by the saturation
capacity of the corresponding compound:

qA = qs,A

[
i=N∑
i=1

(
θA,i +

k=i−1∑
k=1

ϕA,A,k,i + ϕA,B,k,i

)]
(14-A)

qB = qs,B

[
i=N∑
i=1

(
θB,i +

k=i−1∑
k=1

ϕB,k,i

)]
(14-B)

2.4.5. Development of the system of the (2N + 1) Eqs. (9)
and (10)

2.4.5.1. Adsorption–desorption equilibrium on the first
layer. There are three ways for the surface fractionθA,1
to increase:
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• when A adsorbs on the free surfaceθ0,
• when A desorbs from the second layer on a molecule of

A, and
• when B desorbs from the second layer on a molecule of

A.

Similarly, there are three ways that the surface fraction
θA,1 may decrease:

• when A adsorbs on the first layer of A molecules,
• when B adsorbs on the first layer of A molecules, and
• when A desorbs from the first layer.

These different processes may be written as follows:

ka
A,SCAθ0 + α2k

d
A,AθA,2 + kd

B,AθB,2

−(ka
A,ACA + ka

B,ACB + kd
A,S)θA,1 = 0 (15-1A)

For compound B, the situation is somewhat simpler be-
cause B may not adsorb on itself (model assumption III).
The surface fractionθB,1 increases:

• when B adsorbs on the free surfaceθ0, and
• when A desorbs from the second layer on a molecule B.

The surface fractionθB,1 decreases:

• when B desorbs from the first layer, and
• when A adsorbs on molecule B in the first layer.

Hence:

ka
B,SCBθ0 + (1 − α2)k

d
A,BθA,2 − kd

B,SθB,1 − ka
A,BCAθB,1

= 0 (15-1B)

2.4.5.2. Adsorption–desorption equilibrium on the second
layer. By iteration to the second layer, we obtain a similar
pair of equations for the variation of the surface fractions
θA,2 andθB,2:

ka
A,ACAθA,1 + ka

A,BCAθB,1 + α3k
d
A,AθA,3 + kd

B,AθB,3

−(ka
A,ACA + ka

B,ACB + α2k
d
A,A + (1 − α2)k

d
A,B)θA,2 = 0

(15-2A)

ka
B,ACBθA,1 + (1 − α3)k

d
A,BθA,3

−(ka
A,BCA + kd

B,A)θB,2 = 0 (15-2B)

This result is easily generalized to the cases of any layer
from 3 toN.

2.4.5.3. Adsorption–desorption equilibrium on layeri.
The following equations are obtained:

ka
A,ACAθA,i−1 + ka

A,BCAθB,i−1 + αi+1k
d
A,AθA,i+1

+ kd
B,AθB,i+1 − (ka

A,ACA + ka
B,ACB + αik

d
A,A

+ (1 − αi)k
d
A,B)θA,i = 0 (15-iA)

ka
B,ACBθA,i−1 + (1 − αi+1)k

d
A,BθA,i+1

−(ka
A,BCA + kd

B,A)θB,i = 0 (15-iB)

2.4.5.4. Adsorption–desorption equilibrium on layerN.
The following equations are obtained:

ka
A,ACAθA,N−1 + ka

A,BCAθB,N−1

−(αNkd
A,A + (1 − αN)kd

A,B)θA,N = 0 (15-NA)

ka
B,ACBθA,N−1 − kd

B,AθB,N = 0 (15-NB)

2.4.5.5. System of equations.The last equation of the sys-
tem of 2N +1 equations is obtained by writing that the sum
of the free surface fractionθ0 and of the fractions of the sur-
face occupied by molecules of A (θA,i) and B(θB,i) and that
are not covered by any higher layer, is 1 (Eq. (10)). We now
dispose of a system of 2N+1 equations but this system con-
tains 3N unknowns (θ0, θA,1, θB,1 andθA,i, αi, θB,i for 2 ≤
i ≤ N). As aforementioned,N − 1 equations are still miss-
ing to complete a determined system. This situation arises
because we do not know the fractionαi of A molecules ad-
sorbed on other A molecules in theith uncovered layer. An
initial guess must be made. Let us consider a fictitious het-
erogeneous adsorbent surface made only of molecules of A
and B in equilibrium with a solution of molecules of both A
and B (with no underlying or exposed adsorbent). It would
be much like the surface of a mixed A+B solid. Then,α or
the fraction of A molecules adsorbed on A molecules is eas-
ily derived from the three simultaneous equilibria that may
take place in this hypothetical system and which describe
the three possible exchanges between the adsorbed and the
mobile phases:

≡ A + A ⇔≡ AA K = bA,A (16-AA)

≡ A + B ⇔≡ AB K = bB,A (16-BA)

≡ B + A ⇔≡ BA K = bA,B (16-AB)

Defining

α = [≡ AA]

[≡ AA] + [≡ BA]
(17)

and since [≡ A] = [≡ AA] + [≡ BA] and [≡ B] = [≡ AB],
we have

α = 1

(1 + bA,BbB,ACB)/(bA,A)
(18)

We will assume as the first guess to solve the equation
system that all theαi values are equal toα. This assumption
givesN − 1 additional equations:

α2 = α3 = · · · = αi = · · · = αN = α (19-i)

This simplification, based on a physical approximation
that cannot describe correctly the actual adsorption system,
can serve as an acceptable initial guess to begin an iteration
process and solve the whole problem. The number of un-
knowns in the system is now equal to the number of equa-
tions and the system can be solved.
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2.4.6. Resolution of the system of equation
Using the definitions and notations defined earlier and

eliminating the surface fractions of B by substituting
Eq. (15-iB) into Eq. (15-iA), the system of 2N+1 equations
just derived can be rewritten as follows.

2.4.6.1. For the first layer.

[
1 + rA,AbA,ACA + rB,AbB,ACB

(
K2 − 1

K2

)]
θA,1

= bA,SCAθ0 + α2rA,AθA,2 + (1 − α3)rB,A tA,B

K2tB,A
θA,3

(20-1A)

2.4.6.2. For the second layer.Following the same proce-
dure for the similar relationships for the third and second
layers, we obtain:

[
α2 + (1 − α2)tA,B + bA,ACA + tB,AbB,ACB

(
K2 − 1

K2

)

− (1 − α2)tA,BrA,BbA,BCA

K1

]
θA,2

= tA,BbA,BbB,SCACB

K1
θ0 + bA,ACAθA,1 + α3θA,3

+ (1 − α4)
tA,B

K2
θA,4 (20-2A)

2.4.6.3. For theith layer. For the subsequent layersi (3 ≥
i ≥ N − 2), we obtain:

[
αi + (1 − αi)tA,B + bA,ACA + tB,AbB,ACB

(
K2 − 1

K2

)

− (1 − αi)t
2
A,BbA,BCA

K2tB,A

]
θA,i

= tA,BbA,BbB,ACACB

K2
θA,i−2 + bA,ACAθA,i−1

+ αi+1θA,i+1 + (1 − αi+2)
tA,B

K2
θA,i+2 (20-iA)

2.4.6.4. For the (N − 1)th layer.

[
αN−1 + (1 − αN−1)tA,B + bA,ACA

− (1 − αN−1)t
2
A,BbA,BCA

K2tB,A

]
θA,N−1

= tA,BbA,BbB,ACACB

K2
θA,N−3

+ bA,ACAθA,N−2 + αNθA,N (20-(N-1)A)

2.4.6.5. For theNth layer.[
αN + (1 − αN)tA,B − (1 − αN)t2A,BbA,BCA

K2tB,A

]
θA,N

= tA,BbA,BbB,ACACB

K2
θA,N−2 + bA,ACAθA,N−1

(20-NA)

2.4.6.6. Fractional surface coverage of B.These surface
coverages,θB,i, can be derived according to Eq. (15-iB):

θB,1 = bB,SCB

K1
θ0 + (1 − α2)

rA,B

K1
θA,2 (20-1B)

· · ·
θB,i = bB,ACB

K2
θA,i−1 + (1 − αi+1)

tA,B

tB,AK2
θA,i+1 (20-iB)

· · ·
θB,N = bB,ACBθA,N−1 (20-NB)

2.4.6.7. Fractional surface coverage of A.Starting from
layerN and substituting Eq. (20-NA) into Eq. (20-(N-1)A),
each surface fractionθA,i can be successively written under
the form:

γiθA,i = βi,1θA,i−1 + βi,2θA,i−2 (21-iA)

Eq. (10) provides the free surface fractionθ0, allowing
the calculation of the surface fractions of molecules A and
B in the upper layeri (i.e., of θA,A,i, θA,B,i, and θB,i for
2 ≤ i ≤ N, as well as ofθA,1 andθB,1 in the monolayer in
contact with the adsorbent).

2.4.7. Determination of the internal fractional
surface coverages

The amount of A and B trapped below these top layers
(according to the description of internal piled layers shown
in Fig. 1) must be calculated to obtain the total amount
adsorbed. For instance, let us consider the upper layer,i.
ϕA,A,k,i, ϕA,B,k,i and ϕB,k,i are the fractional surface cov-
erages in the adsorbed phase in thekth sublayer (1≤ k ≤
i−1). There are 3(i−1)−1 unknowns since only two vari-
ables are defined fork = 1 (ϕA,1,i andϕB,1,i), so we need
as many independent equations relating these coverages in
order to derive them.

First, we write the relationships stating equilibrium in the
adsorbed phase regarding the exchange of a B for an A
molecule between two consecutive sublayers (k ↔ k + 1).
This gives the followingi − 2 equations:

θA,A,iϕ
2
A,B,i−1,i = θ2

A,B,iϕA,A,i−2,i (22-{i-2,i})

ϕA,A,i−1,iϕ
2
A,B,i−2,i = ϕ2

A,B,i−1,iϕA,A,i−3,i (22-{i-3,i})

· · ·
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ϕA,A,k,iϕ
2
A,B,k−1,i = ϕ2

A,B,k,iϕA,A,k−2,i (22-{k-2,i})

· · ·
ϕA,A,4,iϕ

2
A,B,3,i = ϕ2

A,B,4,iϕA,A,2,i (22-{2,i})

ϕA,A,3,iϕ
2
A,B,2,i = KSϕ2

A,B,3,iϕA,1,i (22-{1,i})

From the assumption made in the model that a molecule
of B never adsorbs on a molecule of B (assumption III), the
interaction configuration in the adsorbed phase remains un-
changed when a B molecule is exchanged for an A molecule
between two neighboring layers (e.g., from layerk to layer
k +1 for 2 ≥ k ≥ i−2) so the equilibrium constant is unity
(seeFig. 2b). The converse situation is different, as shown in
Fig. 2a, when a B molecule is exchanged for an A molecule
between layers 1 and 2 (or between layersi − 1 and i in
Fig. 2c and d), see later. A change in the interaction config-
uration takes place in the adsorbed phase. By decomposing
the exchange process into fictitious intermediate steps it is
easily demonstrated that (seeFig. 2):

KS = bB,SbA,A

bB,AbA,S
(23)

Second, we havei − 1 normalization equations that must
be fulfilled:

ϕA,A,i−1,i + ϕA,B,i−1,i + ϕB,i−1,i = θi (24-{i-1,i})

· · ·
ϕA,A,k,i + ϕA,B,k,i + ϕB,k,i = θi (24-{k,i})

· · ·
ϕA,A,2,i + ϕA,B,2,i + ϕB,k,i = θi (24-{2,i})

ϕA,1,i + ϕB,1,i = θi (24-{1,i})

whereθi = θA,A,i + θA,B,i + θB,i.
Finally, the assumption that B molecules adsorb only on A

molecules but not on other B molecules givei−1 equations

ϕB,i−1,i = θA,B,i (25-{i-1,i})

· · ·
ϕB,k,i = ϕA,B,k+1,i (25-{k,i})

· · ·
ϕB,1,i = ϕA,B,2,i (25-{1,i})

This makes a total of(i−2)+(i−1)+(i−1) = 3(i−1)−1
equations that are required to solve the system of 3(i−1)−1
unknowns.

Note that we decided to omit the exchange B↔ A be-
tween layersi − 1 andi. Their inclusion would lead to the
exact solution for the value ofαi but also toN − 1 addi-
tional constraints. But we already made an assumption re-
garding the values of theN − 1 αi. They are all supposed
to be equal toα as aforementioned. This first guess for the

αi values has the advantage of decoupling the Eqs. (9) and
(10) from those used to derive theϕ surface fraction areas
(Eqs. 22-{k-2,i}, 24-{k,i} and 25-{k,i}). However, this par-
ticular exchange exists and our solution must, eventually be
consistent with our initial estimate, at least within a certain
agreement criterion. The corresponding relationship and the
associated equilibrium constantKL are (seeFig. 2c):

(1 − αi)
2θ2

A,i = KLθB,iϕA,A,i−1,i (26-{i-1,i})

If i = 2 then it is easily shown that this same equation
becomes (seeFig. 2d):

(1 − α2)
2θ2

A,2 = KSKLθB,2ϕA,1,2 (26-{1,2})

The first guess chosen for theαi values (∀i, αi = α) will
be tested by calculating the following relative errors:

�αi

αi

= |α − 1 + (
√

KLθB,iϕA,A,i−1,i/θA,i)|
1 − (

√
KLθB,iϕA,A,i−1,i/θA,i)

(27)

If this error is larger than 0.1%, theαi values will be reini-
tialized to the new guess given by equation 26-{i-1,i} and
the whole procedure will be repeated until convergence for
all αi values.

An example of application is given in the appendix. It
shows the derivation procedure in the particular case of an
adsorbed phase made of five layers.

2.5. Numerical calculations

In all the numerical calculations applied to derive the
final theoretical isotherm data, the multilayer adsorbed sys-
tem was limited to five layers (see furtherSection 4.3). The
concentrationCA and CB in the mobile phase were fixed
to arbitrary values. The values of the parameters listed in
Section 2.4.3. (single-component isotherm parameters,bA,B,
rX,Y, tX,Y, K1, K2, KL, KS andα) were fixed. The numer-
ical values of the parametersγi, βi,1 andβi,2 in Eq. (21-iA)
can then be calculated from Eqs. (28-{i,0}), (28-{i,1}) and
(28-{i,2}) described in theAppendix A. The system of
2N +1 equations (Eqs. (10), (20-iB) and (21-iA) associated
to equilibrium of the upper layersi) is solved numerically
by using the SOLVER tool option available in the EXCEL
spreadsheet. The solutions provide the initial set of fractional
surfacesθA,A,i, θA,B,i and θB,i of the five upper layers as
well as the fractional surface coverage of the free surfaceθ0.

In a second step (see in theAppendix A), the numerical
solutions (also accomplished by using the SOLVER tool in
EXCEL) of the Eqs. (32), (36) and (37) allow the deter-
mination of all the fractional surface coverages associated
with the layers of molecules trapped below the upper lay-
ers with respect to the relations given by Eq.(22-{k-2,i})
(system equilibrium), Eq.(24-{k,i}) (surface normaliza-
tion condition) and Eq.(25-{k,i}) (model assumption #III).
Eq. (26-{i-1,i}) deliver finally a new guess for theαi val-
ues. According toEq. (27)and the convergence criterium
of 0.1% for all theαi values, the numerical resolution of
the same system of 2N + 1 equation is repeated or not.
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The final amount adsorbed (Eqs. (14-A) and (14-B)) can
be calculated once the convergence of all theαi coefficients
has been reached.

3. Experimental

3.1. Chemicals

The mobile phase used in this work was a mixture of
HPLC grade water and methanol (62% methanol, 38% wa-
ter, v/v), both purchased from Fisher Scientific (Fair Lawn,
NJ, USA). The same mobile phase was used for the deter-
mination of the single-component adsorption isotherm data
and for the recording of large size band profiles of the two
single components and of some of their binary mixtures.
The solvents used to prepare the mobile phase were filtered
before use on an SFCA filter membrane, 0.2�m pore size
(Suwannee, GA, USA).

The solutes used were uracil, 4-tert-butylphenol, and
ethylbenzoate. All were obtained from Aldrich (Milwaukee,
WI, USA).

3.2. Materials

A manufacturer-packed, 250 mm× 4.6 mm Kromasil
column was used (Eka Nobel, Bohus, Sweden, EU). This
column was packed with a C18-bonded, endcapped, porous
silica. This column (Column #E6021) was one of the lot
of ten columns previously used by Kele[25], Gritti [26]
and Felinger[27] for their study of the reproducibility of
the chromatographic properties of RPLC columns under
linear and non-linear conditions. The main characteristics
of the bare porous silica and of the packing material used
are summarized inTable 1.

The hold-up time of this column was derived from the re-
tention time of uracil injections. With a mobile phase compo-
sition of 62/38, the elution time of uracil is nearly the same as
that of pure methanol or sodium nitrate. The product of this
time and the mobile phase flow rate gives an excellent esti-
mate of the column void volume. The void volume of the col-
umn and its total porosityεT in 62/38 (v/v) methanol/water
mobile phase are 2.40 cm3 and 0.577, respectively.

Table 1
Physico-chemical properties of the packed Kromasil-C18 (Eka) #E6021
column

Particle size (�m) 5.98
Particle size distribution (90:10, % ratio) 1.44
Pore size (Å) 112
Pore volume (ml/g) 0.88
Surface area (m2/g) 314
Na, Al, Fe content (ppm) 11,<10, <10
Particule shape Spherical
Total carbon (%) 20.0
Surface coverage (�mol/m2) 3.59
Endcapping Yes

3.3. Apparatus

The competitive isotherm data were acquired using a
Hewlett-Packard (Palo Alto, CA, USA) HP 1090 liquid
chromatograph. This instrument includes a multi-solvent
delivery system (tank volume, 1 dm3 each), an auto-sampler
with a 25�l loop, a diode-array UV-detector, a column ther-
mostat and a computer data acquisition station. Compressed
nitrogen and helium bottles (National Welders, Charlotte,
NC, USA) are connected to the instrument to allow the
continuous operation of the pump and auto- sampler and
solvent sparging. The extra-column volumes are 0.058 ml
and 0.90 ml as measured from the auto-sampler and from
the pump system, respectively, to the column inlet. All
the retention data were corrected for this contribution. The
flow-rate accuracy was controlled by pumping the pure mo-
bile phase at 23◦C and 1 ml/min during 50 min, from each
pump head, successively, into a volumetric glass of 50 ml.
A relative error of less than 0.4% was obtained so that we
can estimate the long- term accuracy of the flow-rate at
4�l/min at flow rates around 1 ml/min. All measurements
were carried out at a constant temperature of 23◦C, fixed
by the laboratory air-conditioner. The daily variation of the
ambient temperature never exceeded 1◦C.

3.4. Competitive isotherm measurements by frontal
analysis (FA)

One pump of the HPLC instrument was used to deliver
a stream of the pure mobile phase, the second pump, a
stream of the concentrated solution of the compound(s)
studied in the same mobile phase. The concentration of
the compound(s) studied in each FA run is determined by
the concentration of the mother sample solution and the
flow rate fractions delivered by the two pumps. The break-
through curves are recorded successively, at a flow rate of
1 cm3/min, with a sufficiently long time delay between each
breakthrough curve to allow for the reequilibration of the
column with the pure mobile phase. The injection time of
the sample varied between 5 and 12 min in order to reach
a stable plateau for both components at the column outlet.
The signals of 4-tert-butyl phenol and ethylbenzoate were
both detected with the UV detector at 295 nm.

For the injected solutions whose concentration ranged
between 1 and 19 g/l, it was assumed that the breakthrough
profile of each single-component solution exhibits a front
shock-layer so that Eqs. (1) and (2) were used to calculate
the amounts adsorbed. On the other hand, for the mixture
solution of 4-tert-butyl phenol and ethylbenzoate at 25 g/l
each, the concentration of each compound in the elution
profile had to be determined by fraction collection and anal-
ysis because the front part of the profile of ethylbenzoate
was clearly not a shock layer and, therefore, Eqs. (1) and
(2) do not apply in this case. The individual band profiles
were measured accurately by collecting 20 fractions of
250�l (i.e., 18 droplets each), at a constant flow rate of
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1 ml/min, between the elution times of 11.6 and 16.6 min.
Ten microliter aliquotes of each fractions were then injected
into the same column, using a 70/30 (v/v) methanol/water
mixture as the mobile phase. After a preliminary calibra-
tion, the measurement of the areas of the two separated
peaks, recorded at 285 nm, allowed the determination of
the concentration of each individual component in each
collected fraction. The individual and total band profiles in
the mixed zone were reconstituted by assigning a time to
each fraction. This time is determined by the actual collec-
tion time minus the sum of the times needed for the mobile
phase to percolate through the extra-column volume (55 s at
1 ml/min) and through the capillary connecting the detector
cell and the collector vials (10 s at 1 ml/min).

4. Results and discussion

4.1. Competitive binary adsorption data. Competitive
breakthrough profiles and isotherms

Fig. 3a shows eight breakthrough curves recorded at
295 nm for the binary, equimolar mixture of ethylbenzoate
and 4-tert-butylphenol. The adsorbed amounts are easily
calculated using Eqs. (1) and (2), from the lowest concen-
tration 1–19 g/l, provided that the calibration curve of the
first component is known, allowing the determination of
the height of the intermediate plateau concentration. These
equations provide accurate estimates of the amounts of each
compound adsorbed at equilibrium because the band profiles
of both components have a front shock, hence of the com-
petitive isotherms for the binary mixture studied (Fig. 4).

It is noteworthy that, while the front shock of 4-tert-
butylphenol is eluted after that of ethylbenzoate at low
concentrations, it is eluted before it at high concentrations.
This result was expected because it had been reported
earlier that the single-component isotherms of these two
compounds intersect, so that the chord of the isotherm of
4-tert-butylphenol is higher than that of ethylbenzoate at
low concentrations and lower at high concentrations[18].
So, it is not surprising to observe the same phenomenon
for the competitive isotherm (Fig. 4). The intersection of
the two isotherms Is observed for a concentration of about
6.25 g/l which is also the one for which the breakthrough
curve of the mixture exhibits only one front shock instead
of two at, e.g., 4 and 10 g/l.

A far more surprising result is that the competitive
isotherm of 4-tert-butylphenol is profoundly different from
the single-component isotherm. The latter is well accounted
for by the Langmuir model. The former is no longer convex
upward but exhibits an inflection point at around 13 g/l.
The competitive isotherm of this compound cannot be ac-
counted for by the Langmuir isotherm model. The fact that
it is an S-shaped isotherm of type II means that the pres-
ence of ethylbenzoate affects considerably the adsorption
of 4-tert-butylphenol on octadecyl silica at high concentra-

Fig. 3. (a) Experimental breakthrough curves of equimolar mixtures of
ethylbenzoate and 4-tert-butylphenol for eight concentrations. The arrows
locate the position of the front shock of 4-tert-butylphenol when the
concentration increases.Note: First, the reversal position of the two
shocks at the concentration of 6.25 g/l, where only one shock is observed.
Second, note that the front shock of ethylbenzoate becomes a diffuse
front beyond 14 g/l. (b) Same as (a) concerning the rear part of the FA
breakthrough curves (thick lines). Note the progressive band splitting
of 4-tert-butylphenol when the concentration increases. For a sake of
comparison, the rear profile measured for a 40 g/l mixture is shown as a
dotted line[19]. Remark the constant height of the isolated band, whatever
the concentration applied.

tions. This observation is confirmed by the most unusual
shapes of the individual breakthrough fronts of the two
components for a concentrated solution at 25 g/l of each
compound. These profiles were determined by the analy-
sis of twenty fractions collected during the elution of the
breakthrough front (SeeFig. 5). There is no displacement
effect of the first eluted component: the plateau eluted be-
tween 10 and 11 min after injection is at a concentration
significantly lower than that of the feed.

The rear diffuse profiles of the eight breakthrough exper-
iments are shown inFig. 3b. Their shapes are also most
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Fig. 4. Experimental competitive adsorption data measured by FA for mix-
tures of ethylbenzoate (squares) and 4-tert-butylphenol (circles) at eight
concentrations (1, 2.5, 4, 6.25, 10, 14, 19 and 25 g/l). Note the rever-
sal order of the amounts adsorbed at 6.25 g/l and the S-shaped isotherm
for 4-tert-butylphenol whose single-component isotherm is strictly lang-
muirian.

unusual. At low concentrations, below 6.25 g/l, the concen-
tration at which the two isotherms intersect, the desorption
profiles have a shape similar to the conventional ones, with
an intermediate plateau for the more retained compound, i.e.,
4-tert-butylphenol in this range. This plateau results from
the tag-along effect[1]. Beyond this concentration, however,
the intermediate plateau vanishes, a valley is formed and it
becomes deeper with increasing solution concentration, as
if a new band was progressively separated from the main
part of the band profile. It is remarkable that the height of

Fig. 5. Individual band profiles of the two-component breakthrough curve
measured with a concentration in the feed of 25 g/l each for ethylbenzoate
(squares) and 4-tert-butylphenol (circles). Note the complex shape of each
band profile that forbids the use of Eqs. (1) and (2) to calculate the
amounts adsorbed.

Fig. 6. Comparison between the competitive experimental isotherms of
ethylbenzoate (empty stars, dotted line) and 4-tert-butylphenol (solid stars,
dotted line) and the competitive isotherm models previously derived and
given in Section 2.3(up triangles: IAS model; down triangle: kinetic
model). Note the good agreement at low concentrations but the strong
discrepancies for 4-tert-butylphenol at high concentrations.

this new band remains constant (at about 1.3 g/l) and is in-
dependent of the feed concentration, from 6.25 to 40 g/l (see
Fig. 3b). This phenomenon is confirmed by an observation
reported previously[19] that the nearly complete separa-
tion of a third band of 4-tert-butylphenol takes place for a
0.5–2 ml sample of a 40 g/l solution and that the height of
this band is also independent of the volume injected. This
band splitting could be accounted for only qualitatively with
the IAS and kinetic competitive isotherm models derived
earlier (Section 2.3and[19]). We compare now the experi-
mental adsorption data to those predicted by the two theo-
retical models in order to study the limits of such models.

4.2. Comparison between the experimental adsorption
data and the previous isotherm models

Fig. 6 compares the experimental isotherm data with
those predicted by the two models derived earlier[19].
These two competitive models were consistent with the
best single-component isotherms derived for ethylben-
zoate and 4-tert-butylphenol, the Langmuir and the BET
single-component isotherms, respectively. The parameters
used for the competitive IAS model (Section 2.3.1) were
those of the single-component isotherms derived by fitting
the single-component isotherm data to this model[19],
qs,A = 237.7 g/l, bA,S = 0.03136 l/g,bA,A = 0.0111 l/g,
qs,B = 164 g/l, andbB,S = 0.05613 l/g. The parameters used
for the competitive kinetic model (Section 2.3.2) were also
those derived by fitting the data to the single-component
isotherm model. A last parameter of this second model,
bB,A, accounts for the adsorption of molecules of B on
layers made of molecules of A. The value of this parameter
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(bB,A = 0.026 l/g) was obtained by fitting the experimen-
tal band profiles of a binary mixture to those calculated
with the isotherm. Results showed that both the kinetic
and the IAS competitive models predict well the adsorp-
tion behavior of the two components at low and moderate
concentrations, typically below the intersection point of the
competitive isotherms of the two components. Beyond this
concentration, discrepancies appear for both models, partic-
ularly for 4-tert-butylphenol. Both isotherms predict that the
competitive isotherm for 4-tert-butylphenol remains con-
vex upward at high concentrations while experimental data
demonstrate that it is a S-shaped isotherm, first convex up-
ward at low concentrations, then convex downward at high
concentrations.

Accordingly, these two earlier models largely under-
estimate the amount of 4-tert-butylphenol adsorbed on
the stationary phase at high concentrations. This demon-
strates, first, that the mixture of ethylbenzoate and 4-tert-
butylphenol cannot be considered as ideal in the adsorbed
phase. Second, it shows that, although the kinetic model,
which allows molecules of B to adsorb on layers made
of molecules of A, gives a slightly better agreement with
the experimental adsorption data, it remains unsatisfac-
tory, probably also because of the nonideal behavior of
the adsorbed phase. The large increase of the amount of
4-tert-butylphenol adsorbed at high concentrations, the cor-
responding change in the sign of the isotherm curvature,
and the reversal of the elution order of the two components
are not accounted for by this competitive model either. This
is probably the reason why the kinetic approach did not lead
to an accurate description of the overloaded band profiles
of the two compounds studied and, more particularly, of the
band splitting observed for 4-tert-butylphenol[19].

To take these results into account, we designed a new
kinetic competitive isotherm based on the same set of
assumptions but completed with an additional, physical
assumption, that molecules of A could adsorb on a layer
made of molecules of B. This will lead to larger amounts
of A adsorbed at high concentrations.

4.3. Comparison between the experimental adsorption
data and the new isotherm model

This competitive model uses the parameters of the
single-component isotherms for the terms that are not prod-
ucts of both concentrations. The values of the other param-
eters are then estimated from the experimental adsorption
data of the two components by parameter identification.
Since a numerical solution is required for the calculation
of the competitive adsorption data, a certain, finite num-
ber of layers must be assumed to calculate the theoretical
competitive isotherm. For the sake of simplicity, we as-
sumed this number of layers to be five. The multilayer BET
isotherm (Eq. (5)) fits excellently the single-component
adsorption data of ethylbenzoate in the range 0–40 g/l (See
Fig. 7). It seemed useless to consider more layers, which

Fig. 7. Comparison between the single-component adsorption data (empty
stars) of ethylbenzoate and the best multilayer BET model (solid line)
assuming five piled layers.

would complicate the calculation of the amounts adsorbed
for no apparent gain. Furthermore, this choice makes more
physical sense than that of an infinite number of molec-
ular layers which would hardly fit inside pores that have
an average diameter of 110 Å. Under these conditions, the
best single-component isotherm parameters for ethyben-
zoate areqs,A = 181.7 g/l, bA,S = 0.04154 l/g,bA,A =
0.01449 l/g instead ofqs,A = 237.7 g/l, bA,S = 0.03136 l/g,
bA,A = 0.0111 l/g when an infinite number of layers is
assumed. Note that the saturation capacity of ethylbenzoate
is now closer to that of 4-tert-butylphenol (qs,B = 164 g/l),
a result that seems to be far more acceptable since both
low-molecular-weight compounds have exactly the same
molar mass (MW = 150.2 g/mol).

This new model introduces in the competitive model two
parameters,bA,B andbB,A, to account for the interactions
between the molecules of A and of B. These parameters can-
not be derived from the single-component adsorption data
but only from the competitive adsorption data. They were
obtained by fitting to the model the experimental data ac-
quired for the binary solution at 25 g/l. The amounts ad-
sorbed were accurately measured by analyzing the 20 frac-
tions collected during the five minutes that takes the elution
of the breakthrough of the solution (seeFig. 5). This ap-
proach was preferred to the use of the amounts adsorbed at
19 g/l or 14 g/l (Fig. 4) because Eqs. (1) and (2) give only
approximate values of the actual mass adsorbed for reasons
aforementioned.

Finally, the model includes two other independent param-
eters,tX,Y andrX,Y (see definitions, Section 2.4.3.). These
parameters are the ratios of two desorption rate constants. If
we assume that the rates of adsorption of the molecules A
and B, either on the adsorbent surface, S, or on any succes-
sive layer made of either adsorbate molecules are the same,
we can writetX,Y and rX,Y as functions of the adsorption
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constantbX,Y. From the definitions inSection 2.4.3, we
have:

tX,Y = bB,A

bX,Y
(40)

rX,Y = bY,S

bX,Y
(41)

Then, the model contains only two variable parameters,bA,B
andbB,A. And we have also two equations to solve:

qA (CA = 25 g/l, CB = 25 g/l, bA,B, bB,A) = qA,exp (42)

qB (CA = 25 g/l, CB = 25 g/l, bA,B, bB,A) = qB,exp (43)

The best set of values derived from the numerical solu-
tions of Eqs. 34 and 35 isbA,B = 0.0105 l/g andbB,A =
0.0120 l/g, with an accuracy of±0.0002 l/g.Fig. 8 com-
pares the isotherm calculated from this set of parameters,
in the range 0–25 g/l (lines), with the FA data (symbols).
The agreement is much better than with the two previ-
ous models, particularly for the competitive isotherm of
4-tert-butylphenol at high concentrations. A slight differ-
ence is observed between the two sets of data regarding
the intersection point of the two isotherms. It is predicted
to take place at a concentration around 9 g/l instead of
an experimental value of 6.25 g/l derived from the reten-
tion times of the front shocks of the two breakthrough
curves (using Eqs. (1) and (2)). Nevertheless, the shapes
of the two isotherms are now consistent with that of the
experimental data, that is with a S-shape isotherm. For in-
stance,Fig. 9 shows that the slope of the isotherm chord
of the 4-tert-butylphenol isotherm strongly decreases with
increasing concentration at low concentrations, reaches a

Fig. 8. Comparison between the competitive experimental isotherms of
ethylbenzoate (empty stars, dotted line) and 4-tert-butylphenol (solid stars,
dotted line) and the competitive isotherm models previously derived in
Section 2.4. (connected hexagones) assuming five layers maximum in the
adsorbed phase. Compare withFig. 6 the agreement at high concentrations
between experimental data and the model prediction for 4-tert-butylphenol.

Fig. 9. Plot of the competitive isotherm chord of 4-tert-butylphenol cal-
culated from the implemented kinetic competitive model. Compare with
the shapes of the predicted isotherms inFigs. 6 and 8.

minimum, and increases beyond 25 g/l. This is the direct
consequence of the possibility for ethylbenzoate molecules
to adsorb on layers made of molecules of B, which in turn,
can adsorb on layers of molecules of A. This suggests that a
synergetic adsorption phenomenon takes place in the studied
system.

Finally, a plot of the evolution of the convergentαi values
(seeSections 2.4.2 and 2.4.3, and Eqs. (11), (13) and (15))
for concentrations ranging between 0 and 40 g/l and for two
to five layers is shown inFig. 10. Except for the highest

Fig. 10. Plot of theαi values (or proportion of molecules of A adsorbed
on layers made of molecules of A in the upper layers, i.e., here, layers
2, 3, 4 and 5) versus the mixture concentration in the mobile phase.
The αi are obtained after the numerical calculations have converged with
0.1%. Except for the upper layer 5, note thatαi decreases with increasing
concentration of the mixture, showing that molecules of A are more often
adsorbed on molecules of B than on other molecules of A.
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layer (i = 5), αi decreases with increasing concentration
of the equimolar mixture used. In other words, the higher
the concentration, the more frequently a molecule of A is
adsorbed on a molecule of B in the layer directly in contact
with the mobile phase. However, this physical model of the
adsorbed phase, as a binary multilayer system, needs to be
validated. To this purpose, we discuss, in a forthcoming
paper, the calculation of overloaded band profiles using this
new kinetic competitive isotherm model. This calculation is
long and difficult because of the complex approach used to
calculate isotherm data points and may require a completely
original approach.

5. Conclusion

The new competitive isotherm model is consistent with
the single-component isotherms of the two compounds
studied, ethylbenzoate and 4-tert-butylphenol, a five lay-
ers BET and a Langmuir isotherms, respectively. This
new model accounts well for the adsorption data mea-
sured by frontal analysis for equimolar mixtures of these
two compounds. Two simpler models which were pre-
viously derived from a similar physical model failed to
describe the experimental competitive adsorption data
at high concentrations. The main discrepancy concerned
the adsorption of 4-tert-butylphenol whose experimental
isotherm is clearly S-shaped, not strictly convex upward
as predicted by these earlier models. By contrast, the new
kinetic model accounts well for the competitive adsorp-
tion data. The adsorption constant of 4-tert-butylphenol
onto layers made of ethylbenzoate (bB,A = 0.0120 l/g)
is intermediate between the adsorption constant of
ethylbenzoate on layers made of 4-tert-butylphenol
(bA,B = 0.0105 l/g) and that of ethylbenzoate on itself
(bA,A = 0.0145 l/g).

The development of this new model, despite its long
derivation and its numerical definition, constitutes a progress
in our understanding of the splitting of the band profiles
of 4-tert-butylphenol when in mixtures with ethylbenzoate
at high concentrations, a most unusual phenomenon. A
forthcoming paper will discuss the use of this isotherm
model and of the Rouchon program of calculation of over-
loaded band profiles in chromatography to account for this
phenomenon.
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Appendix A. Example of resolution: case of N = 5
layers → i ∈ [1,5]

The solution of the system of Eqs. (9-iA), (9-iB) and (10)
is given under the form provided by Eq. (21-iA). We write
here the exact solution forγi, βi,1 andβi,2:

γ5 = α5+(1−α5)tA,B − (1−α5)t
2
A,BbA,BCA

K2tB,A
(28-{5,0})

β5,1 = bA,ACA (28-{5,1})

β5,2 = tA,BbA,BbB,ACACB

K2
(28-{5,2})

γ4 = α4 + (1 − α4)tA,B + bA,ACA

− α5β5,1

γ5
− (1 − α4)t

2
A,BbA,BCA

K2tB,A
(28-{4,0})

β4,1 = bA,ACA + α4β4,2

γ4
(28-{4,1})

β4,2 = tA,BbA,BbB,ACACB

K2
(28-{4,2})

γ3 = α3 + (1 − α3)tA,B + bA,ACA + tB,AbB,ACB
K2 − 1

K2

−α4β4,1

γ4
− (1 − α3)t

2
A,BbA,BCA

K2tB,A

− (1 − α5)tA,Bβ5,1β4,1

K2γ5γ4
− (1 − α5)tA,Bβ5,2

K2γ5

(28-{3,0})

β3,1 = bA,ACA + α4β4,2

γ4
+ (1 − α5)tA,Bβ5,1β4,2

K2γ5γ4

(28-{3,1})

β3,2 = tA,BbA,BbB,ACACB

K2
(28-{3,2})

γ2 = α2 + (1 − α2)tA,B + bA,ACA + tB,AbB,ACB
K2 − 1

K2

−α3β3,1

γ3
− (1 − α2)tA,BrA,BbA,BCA

K1

− (1 − α4)tA,Bβ4,1β3,1

K2γ4γ3
− (1 − α4)tA,Bβ4,2

K2γ4

(28-{2,0})

β2,1 = bA,ACA + α3β3,2

γ3
+ (1 − α4)tA,Bβ4,1β3,2

K2γ4γ3

(28-{2,1})

β2,2 = tA,BbA,BbB,SCACB

K1
(28-{2,2})
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γ1 = 1 + bA,ArA,ACA + bB,ArB,ACB − α2rA,A
β2,1

γ2

− rB,AbB,ACB

K2
− (1 − α3)rB,A tA,Bβ3,1β2,1

K2tB,Aγ3γ2

− (1 − α3)rB,A tA,Bβ3,2

K2tB,Aγ3
(28-{1,0})

β1,1 = bA,SCA + α2rA,A
β2,2

γ2
+ (1 − α3)rB,A tA,Bβ3,1β2,2

K2tB,Aγ3γ2

(28-{1,1})

β1,2 = 0 (28-{1,2})

In this first part of the calculation, theαi are assumed to be all
equal to the initial guess,α (Eq. (18)). A first approximation
of the composition of the upper layers 1–5 is then easily
achieved (i.e., all theθ fractions are known).

The surface fractions,ϕ, describing the composition of the
different sublayers, 1–4 of the adsorbed system below each
upper layer can now be obtained numerically as follows.

A.1. Upper layer,i = 5

First, from the equilibrium Eqs. (22-{3,5}) and (22-{1,5}),
the normalization Eq. (24-{1,5}) and the model
Eqs. (25-{1,5}) and (25-{2,5}), we expressϕA,B,4,5 as a
function ofθA,B,5, θA,A,5, ϕB,2,5 andϕB,1,5:

ϕA,B,4,5 = ϕB,2,5

ϕB,1,5

√
KSB5(θ5 − ϕB,1,5) (29)

with

B5 = θ2
A,B,5

θA,A,5
(30)

Second, from the equilibrium Eq. (22-{2,5}), the normal-
ization Eqs. (24-{2,5}) and (29), we expressϕA,A,4,5 as a
function ofB5, ϕB,2,5 andϕB,1,5:

ϕA,A,4,5 = (θ5 − ϕB,1,5 − ϕB,2,5)

ϕ2
B,1,5

KSB5(θ5 − ϕB,1,5) (31)

Finally, from the model Eq. (25-{4,5}) and the normal-
ization Eq. (24-{4,5}), on the one hand, and from the model
Eq. (25-{3,5}) and the normalization Eq. (24-{3,5}), on the
other hand, we obtain the following two equations-two un-
knowns system:

θ5 = θA,B,5 + ϕB,2,5

ϕB,1,5

√
KSB5(θ5 − ϕB,1,5)

+ (θ5 − ϕB,1,5 − ϕB,2,5)

ϕ2
B,1,5

KSB5(θ5 − ϕB,1,5) (32-1)

θ5 = ϕB,2,5

ϕB,1,5

√
KSB5(θ5 − ϕB,1,5)

+ϕB,2,5 + KS(θ5 − ϕB,1,5)
ϕ2

B,2,5

ϕ2
B,1,5

(32-2)

The knowledge of bothϕB,1,5 andϕB,2,5 allows the cal-
culation of all the otherϕ fractional occupancies under the
upper layer,i = 5.

A.2. Upper layer,i = 4

From the equilibrium Eq. (22-{2,4}), the normalization
Eq. (24-{2,4}) and the model Eq. (25-{1,4}), we express
ϕA,B,3,4 as a function ofθA,B,4, θA,A,4 and ϕB,1,4, as the
solution of the second degree equation:

ϕ2
A,B,3,4 + B4ϕA,B,3,4 + B4(ϕB,1,4 − θ4) = 0 (33)

with

B4 = θ2
A,B,4

θA,A,4
(34)

Using the equilibrium Eq. (22-{1,4}), the model
Eq. (25-{1,4}) and introducing the solution ofEq. (33)for
ϕA,B,3,4, we can expressϕA,A,3,4 as a function ofϕB,1,4
only.

ϕA,A,3,4 = KS


−B4 +

√
B2

4 + 4B4(θ4 − ϕB,1,4)

2




2

× θ4 − ϕB,1,4

ϕ2
B,1,4

(35)

SinceϕB,3,4 = θA,B,4 and using the normalization condi-
tion for the sublayerk = 3, we can solve numerically the
following equation and deriveϕB,1,4:

KS


−B4 +

√
B2

4 + 4B4(θ4 − ϕB,1,4)

2




2

θ4 − ϕB,1,4

ϕ2
B,1,4

+
−B4 +

√
B2

4 + 4B4(θ4 − ϕB,1,4)

2
+ θA,B,4 = θ4 (36)

Then all the otherϕ values describing the adsorbed system
under the upper layer,i = 4, are easily derived as well as
the coefficientαi from Eq. (26-{3,4}).

A.3. Upper layer,i = 3

Following the same procedure, from the equilibrium
Eq. (22-{1,3}), we derive:

ϕ2
B,1,3 = KSB3(θ3 − ϕB,1,3) (37)

With

B3 = θ2
A,B,3

θA,A,3
(38)

ϕB,1,3 is easily derived from this second degree equation.
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A.4. Upper layer,i = 2

The solution forϕB,1,2 is trivial from Eq. (24-{1,2}):

ϕB,1,2 = θA,B,2 (39)
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